o

Supplements

When coping with real-life resource allocation problems, some of the assinup-
tions of our three basic project scheduling preblems may be too restrictive,
This chapter is dedicated 1o expansions of Lhe basic mnodels which pennit us
to cover some features that are frequently enconntered 1 practice,

[n Section 5.1 we deal with break colendars, which speelfy thme intervals
during which some renewable resources cannot be used {snch as weekends or
night shifts, where skilled staff is not available). In that case, it is often nee-
essary 1o relax the requirement that activities nmst not be interrnpted when
being in progress. Instead, we assine that the execution of certain activities
can be suspended doring breaks, whercas other activities still st not be
interrupted. We explain how to perforin temporal scheduling computations
in presence of break calendars and outline how the enmeration scheme for
regilar objective funclions discussed in Section 8.1 can be generalized to this
problem setting,

When performing projects whose aclivitios ave distributed over different Jo-
cabions shariyg eormumen vesources like manpower, heavy maclinery, or equip-
ment, changeover fimes for tear down, transporiation, and reinstallation of
regsouree units have to be taken into account. During the changeover, those
resource units are not available for processing acltivities. Due to the transporta-
tion of resouree mits, the changeover thmes are generally sequence-dependent,
which means that the time needed for changing over a resource unit between
the execution of two consecutive activities depends on both activities. In Sec-
tion 5.2 we show how Lo adapt the relaxation-based approaches to the ocour-
rence of sequence-dependent chaugeover times,

I many applications of project management, the assignment of resources
to the project activities is not {completely) predetermined by technology. We
may then perform certain activities in alfernative execulion modes, which dif-
for in durations, thme lags, and resource requiraments. The execution modes
of anr activity reflect tradeolfs between the thne and resonwrce demands, Foy
example, the duration of an activity may he shortened by increasing the none-
her of allotted resonrce nnits (thne-resonrce tradeofl) or some resources nsed
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miay be replaced by other resonrces {resource-resource tradeoff ). If i that case
the selection of an appropriate execution mode for each activity in the proj-
ect planning phase is deferred from the time and resonrce estimmations Lo the
resource allocation step, we obtain a mli-mode resource allocation problern,
In Section 5.3 we are concernad with relaxation-based procedures for solving
multi-mode resource allocation problems with finitely many execution modes.

As we have seeny in Section 1.3, the concept of {discrete} crmlative re-
sotrces offers a straightiorward way of wodelling constraints arising from dis-
crete material flows in assembly enviromments. Sometimes, however, invento.
ries of intermediate products arc not depleted awd replenished batchwise at
the occurrence of certain events but rather coutimiously over the execution
time of consmming and producing real activities. Snch contimyous material
flows are, for example, typical of mass produetion n the process industries.
Material Hows may alse De semicontinuous, which means that facilities may be
operated in bateh or continuons production modes. n Section 5.4 we develop
the concept of confinuous cumulative resources and we propose a refaxation-
based approach to solving reseurce allocation problemus with the latter type
of resources and convex objective functions. Resource conflicts are stepwise
resolved hry introducing Hnear constraints which ensure that at the start or
completion of some activity, the haventory level s between the safety stock
and the storage capacity, For each activity we branch over the alternatives
whoether or not the activity contributes to settling the resonvee conflict in
qurestion,

I the following Sections 5.1 1o 5.4 we closely follow the presertation in
the book of Nerany et al. (20088}, Sects, 211, 2,14, 2.15, and 2.12.2.

5.1 Break Calendars

In many real-life projects, certain renewable resources are not available during
breaks like weekends or schednled malntenance times. Schednling the activi-
ties subiect to break calendars is termed colendarization. For what follows, we
assine fhaf some real activities may be luterrupted during a break, whereas
others mnst not be interrupted due to technical reasons. Hence, the set of
all real activities V'* decomnposes tnto the set Vi of all {break-Hnterruptible
aetivitios and the set V3 of all non-interruplible activities, The processing
of imerrnptible activities ¢ € V) can only be stopped at the beginning of a
break and bas to be resmmmed at the end of the break. This assunmption distin-
guishes calendarization from preemptive project schiednling probloms, where
activities may be interrupted at any point in time {sece, e.g., Demenlemecester
and Herroelen 1996). Furthermore, for each interruptible activity 4 ¢ Vi, a
minimum execution fime e; € N is preseribed during which 7 has to be in
progress without being suspended, eg., &; = 1. To shiphify notation, we set
¢; == p; for non-interruptible activities ¢ ¢ V), and assunye that for activities

i € Vi, the time between any two successive breaks is not less than e,
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In this section we first describe procedures presented by Franck et al.
{2001 ¢} for the temporal scheduling of projects subjeet Lo break calendars for
activities and prescribed time lags, We then briefly sketch how the relaxation-
based approach for regular objective functions diseussed in Scctlon 3.1 can be
adapted to the presence of break calendars. Preliminary versions of the tempo-
ral scheduling methods have been devised by Zhan (1992} and Franck {1899,
Sect. 3.3, An alternative approach can be found tn Travtmann {20018). Here,
the calendar-dependent precedence relationships between activities are taken
into accomwnt by distinguishing between start-to-start, start-to-completion,
completion-to-stars, and completion-to-completion time lags.

A break calendar can be regarded as a right-continnons step function b
R — {1} \\rh{,m bt} = 0 if thue ¢ < 0 or i ¢ falls into a break, and B(¢) = 1,
otherwise. f b{r)dr is the lotal working téme in interval [2,¢]. In practice,
different renewable resources & € R may have different calendars. We then
oltain the corresponding ectivily calendars b; for activities ¢ € V2 by setting
b{t) 1= 0 exactly U ¢ requires some resonrce £ € RY which is not available
at time &I 5;{2) = 0, we have to suspend the execntion of activity ¢ € V%
being i progress at time £, For activities ¢ € V%, the time interval between
the start and completion of ¢ st not contain any time ¢ where 5;{¢) = (.

The constraints ariging from mHninnnn execnbion Limes e; can be stated as
follows:

{}3'{’?') we | (3 eVvVe Si<r<S+ Eii) {51)

If i V%, (5.1} means that the execntion of 4 must not be interrapted by a
hreak.

Let C; > 8; 4+ p; again denote the completion time of activity ¢ & V. In
interval {8y, Oy, activity ¢ 18 i progress at time ¢ procisely i b;(£) = 1. Thus,
given start thine S;, the completion time Cy{8)) of 1 is mmiquely determined by

Cil 83} e min{t > 5+ p; | f() b{r)dr = p;}

Clearly, mininunn and maximam time lags may depend on calendars, too.
For example, a precedence constraint between activities ¢ and § refers to the
completion thne € and thus to the calendar b; of activity 4. Therefore, wo
introduce a time lag calendar by for eacly arc (i, §) € E of project network N.
Point i thoe ¢ is taken into account when computing the total working
time between the starts of activities ¢ and § exactly if b;(t) = 1. That is,
I‘:' bi(7)dr equals the total working time in terval [S;, S;1 i §; < &, and
equals the negative total working time in interval [85. 85, otherwise.

The actnal mipinn difference 4;; between start times S; and S that is
preseribed by are (4,7} € E depends on start time S; and calendar by,

A (8 = }}jlil}{-ﬁ =0 [;e bylrydr 2 dyl 5 (li,jye E}

S+ 445{8;) is the earliest point i thme ¢t > 0 for which the total working
time in interval |55, 4] or [1, 5if, respectively, is greater than or equal to [d5].
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Since bi;(t) € {0,1} for all £ = 0, it holds that |A;(S0 = 16,1, and Ay(5))
and §;; have the same sign,

For temporal scheduling, the tempoval constraints 5; — 5; 2 &y for all
{7, 4} € B have to be replaced by

S; - 812 AS) () € B)

which due to b;(f) > 0 for all £ € R can also be written as

Jo! bug(r)dr 28,5 ((i.4) € E) (5.2)
The interpretation of inequality {5.2) Is as follows. If 4;; > 0, then the to-
tal working time f{?’ bi{ridr between the starls of aclivity ¢ al time 5
and the start of activity 7 at time &; must be at least &, 1f &; < 0
then ];’ bi{r)dr > &;; means that the total working time [, ;’ Chi{ridr s
—[o7 big{rydr between S and 5 mmst not exeeed —d;;, Notice that for min-
fmum tine lags d’;?"” = d;; = {0, constralut {5.2) Is at least as tight as the
ordinary temporal constraint 5; — & = &;;, whereay maximum time lags
A4 w wdy; > 0 are relaxed by considering breaks. Given start time S for
activity i, the minium slart time 5y of activity § satistying (5.2) i

t* = min{t > 0] j;( bij{r} dr = &}

Constraint (5.3} and (5.2} are veferred to as calendar constraints. A sched-
ule 5 satisfying the ealendar constraints s called calendar-feasible.

We now explain how to integrate the calendar constrainis into the com-
putation of carliest schedule S by woedifying the labelcorrecting method
givarl by Aleorithm 1.3, Algorithm 2.2 for the minimization of regular ob-
jective functions subjedd to temporal and disjancive precedence coustraints
can be adapted similarly. The problem of finding the sarliest calendar-feasible
gschedule BES van be formnlated ax follows:

" . LR " .
Minhnize 2 5
Fen S
. e 3 (5.3)
snbject o (5.3} and (5.2}
82686 {teV]

We start the label-correcting algorithyy with £8 = (0, —oc, .. ., —o0) and
successively delay activities il all calendar coustraints are satisfied. At the
beginning, queue € only containg the project beginning event 0. At each
fteration, we dequeue an aetivity 2 € V from Q. If 1 s a real activity,
we check whether start thme K5 eomplies with calendar by by computing
the earliest point in tinte £* > ES; for which {here is no break in interval
I 17 + o] (of. constraints {5.13). In case of ES; < ¢, the start of activity 1
it be delayed until time 1. Next, we cheek inequalities (5.2) for all aves
{i,71 ¢ F with initial node 4. To this end, we compute the earliest start thne
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; v s i : . .. P f
¢ = mnl"z{t > E8; | [y buylr)dr = d;3} of activity 7 given start time ES;
for activity 4. I BS; < £%, schedule ES does nol satisfy the corresponding
prescribed thme lag, and thuy we increase 555 up to £ In that case or if
b{r} = 0 for some t° < 7 < ¥ 4 ey, we enqueue § to @ if 7 ¢ @ Algo-
rithin 5.1 sammarizes this procedure.

Algoritim: 5.1, Barliest calendar-feasible schadnle

Input: MPM project network N = (V| B8}, partition {¥2, V351 of set V¥, activity
calendars b for ¢ & V*, time lag calendars by, {or (4,j) ¢ E.
Output: Barliest schednle BS,

set K8y e 0, o= {0}, and ES; o w00 foralli € VA
whije @ + # do

dequene 4 from

if i ¢ V' then

if ¢ = d then terminate; (+ there is no tme-feasible schedule %)
else if F25; < then sot FS; im Y
for all {i,j) € ¥ do

if ES; <& then
sel B8 e £7)
if § & ) then engueue § to ()
e VoL and by{r) =0 for some " <7 < " 4 ¢; then axpene § to @
return earliest schoednle ES)

Let 7 denote the nunber of breaks in all activity and tine lag calendars, H
soine activity ¢ is inspectad more than n{5+ 1) thnes, then there is no schedule
satisfying the calendar constraiids, and the algorithm can be stopped. Franck
et al. {2001a) have shown that if the calendars are given as sorted lists of
start and cud thees of breaks, Algorithm 8.1 can be implemonted to run in
Olmnd) time,

The latest schedule .8 can be computed by using # similar label-correcting
procedure again starting al node 0 and proceeding from terminal nodes 7 to
initial nodes 4 of ares {i. 7} ¢ E. In difference to Algorithin 5.3, £* is set to be
the lastest time for which condition {5.1) or {5.2), respectively, is fulfilied {for
details we refer to Neumanu et al, 20035, Sect, 2,11},

The enumeration scheme for resource sllocation problenms with regular ob-
jective fuunctions (see Algorithin 3.1) can be used without almost any modifica-
tion for the case of calendar constraings as well Schedule § = min{U, e pSrip))
i then computed by the adaptation of Algorithm 3.2 to the case of break cal
cndars, where the calendars by for pairs (4, ) € p commcide with calendars b;
e e Ve and are given by bi;{#) = 1forall 0 < ¢ < dif i e V. Splp) now
denotes the set of all schedules satisfying the calendar constraints {5.1) and
(0.2} for relation network N{p}. Similarly o the case without calendars, #
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ean be shown thal sel Sp{p}, though generally being disconnected, possesses
a nnigue minimal poind {ef. Franek 1988, Sect, 3.2) and that this property
still carries over to the nnion Uy pSr{p) of sets Sp{p).

5.2 Sequence-Dependent Changeover Times

This section is coneerned with sequence-dependent changeover times arising
when several {sub-Iprojects using conunon renewable resources are performed
simnltancousty at different sites (multi-site scheduling, see c.g., Saner el al.
1698). When a unil of resource b € R? passes from the exeention of an
activity ¢ af a location a to an aclivity j to be carried out at a different
location b, the uuit has Lo be torn down after the completion of {) transported
froni & to b, and pit into service for processing 7. Thus, the changeover thue
of resonrce & hetween the exeoutlon of activities ¢ and 7 generally depends on
resource k& and on both activities ¢ and 4.

There is an extensive literatnre dealing with sequence-dependent change-
overs In shop-floor environnients, where changeover times are caused hy re-
placing tools or eleaning. The greal majority of the papers considers Lthe prob-
tern of minimizing the total cost associated with changeovers (for a literature
review we refer to Aldowalsan et al. 1999). Brucker and Thiele {1996} have
devised a branch-and-bonnd algorithm for a general-shiop problem where the
makespan is to be minimized subject Lo precedence constraints and sequence-
dependent changeover times between operations. Koliseh {1895}, Ch. &, has
shown how 1o model cliangeover thnes between activitles of a projecl by -
troducing alternative execution modes for the activities {see Section 5.3}, The
changeover Limes between two activities are assumed to be equal to a sequence-
independent setup time or equal to zero, Moreover, the capacity R of each
resource & @ R eguals one. Trautinann (2001a}, Sect. 3.3, lias devised a
branch-and-hommd algoritli for minimizing the preject duration in case of ar-
bitrary resource capacities ., slngle-unit resource requircments ry. € {8, 13,
and general sequence-dependent changoover thmes,

in the seqnel, we drop the asswmption of single-unit resource requirements
and consider any regular or convexifiable objective fimection f. Let Vi =
fi € V* | 7 > 0} be the set of all activities using resource k ¢ R7. With
#5; € Zzp we denote the changeover time from activity an ¢ € Vi Lo an
activity § € Vi ou resouree k, where #5 = 0 for all ¢ € V. We suppose that
the week triongle inequality

O+ pi+ 05 2 0
is satisfied for all & € RP and all b, 4, § € V)2, This assnmiplion is generally met
11 practice beeanse otherwise it would be possible Lo save changeover time by
processing additional activities. For potational convenience we additionally
assuge thal there are peither changeovers from the preject beginning event 0
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{0 activities ¢ € V' {setnps) nor changeovers from activities ¢ € V¢ to the
project termination event ni+ 1 {teardowns}. The latter condition can always
be fulfilled by mtroducing the mininum thue lags @™ e MaXpeRrieVy ok
and di, = IDAX L ERPEVE ﬁ,ﬁ_"“n@_} and then putting 9§, = ﬁf‘m 41 = 0for ali
ke R and all i g V.

The resource-consirained project schednling problem {P) with sequence-
dependent changeover times can be formmlated as follows. We strive at min-
innzing obiective function f such that all temporal and curnulative-rescurce
constraints are observed and al any polid n time, the demands for renewable
resources by activities and changeovers do not exceed the respective resource
capacitics. More precisely, let for given resonrce k € R, Xy 0 V¥ - P(N) be
a mapping providing for each activity ¢ @ V¥ the set of nnits of resource k
processing activigy 4, e,

| Xe(i) = rae (1€ V) (5.4)

We call & schedule § changeover-feasible if for cach resource k € RP, map-
ping X; can he chosen sucl that

S =8+t 'ﬁﬁ

or S’?'.ZS;%-QOJqL.;‘;’E-i} GIeVe it NN Xu()#9)  (59)

and
Xel) C {1, R} (e Ve (56)

(5.5) suys that if there & a unit of resource & processing both activities i
aud 4, then sctivitics ¢ and § (lucinding the possible cliangeover in between)
must not overlap. {5.6) limits the availability of resource & to By, nnits. Since
all changeover thnes are nomegative, a changeover-feasible schiedule always
ohserves the rencewable-resonrce constraints (1.7},

in the loHowiug, we develop an eguivalent characterization of the ehange-
over-feasibility of schedules, which will serve as a hasis for the solution
metliod discussed laler on and which draws from a model nsed by Nigler
and Sehdnherr (1989 for solving time-resonrce and time-cost tradecf prob-
fems. The nnderlying couecepts go back to a model for aircraft scheduling
presented in Lawler (1976}, Sect. 4.9. A slmlar tanker scheduling problem
has already been studied in an early paper by Dantaig and Fualkerson (1954).
Let 9 be some schedule and let & € R” be a renewable resonrce. The ana-
logue o schedule-induced striet order 68 introduced in Subseciion 2.1.1 18
the relation

O8(S) = {(h, 1) € Vi x Vi | 8 2 814 pi + 9]

Owing to the weak triangle inequality and becanse p; > O for all ¢ € V%, rela-
tion #%(5) is tramsitive aud asymmetric and thus represents a strict order i
set V¢ In contrast to the case without changeover times, however, 6*(S) dooes
not represent an interval order in general. We illustrate the latter statement
by an example.



130 5. Supplements

Ezample 5.1. Consider the schedule § depicted in Figure 5.1a and assume
that the changeover times arc 913 = 34 = 0 and ¥4 = ¥y = 1. The
strict order induced by schedule S is 6(5) = {(1,2),(3,4)}, whose precedence
graph G(¢(5)} = 2P» is shown in Figure 5.1b. Since a striet order ¢ is an
interval order if and only if its precedence graph does not contain the parallel
composition 2P5 of two ares as induced subgraph (sce, e.g., Mohring 1984 or
Trotter 1992, Sect. 3.8), #(5) is not an interval order.

(a) (b) T
e 1 \E/‘ H\f_l/l
1 2 =
= i © @
1 2

TFig. 5.1. Schedule-induced strict orders are no longer interval orders: (a) Gantt
chart for schedule 5; (b) precedence graph G{#(5))

Let for given schedule 5 and resource k € R?, X; be a mapping satisfying
conditions (5.4} and (5.5) and let 7 (5) := [Useye Xg(i)| denote the number of
resource units used. Clearly, S is changeover-feasible exactly if v (S) < Ry, for
all £ € R?. We consider an antichain U in schedule-induced strict order 8%(S).
It follows from the definition of 8%(S) that [S;, S; +p; —Hfﬂ” [N[S;, 8 +p; +"9?1'{
# { for any two activities 7,7 € U. (5.5) then lmplics that XN Xp() =9
for any 4,7 € U. This means that | Ujery Xo(9)] = 30 [Xu(f)| = X e mik-
On the other hand, it is obvious that for any subset U’ C V2, the number
| Uierir Xi(2)| of resource units occupied by activities from U’ is less than or
equal to the joint requirements ;.. 74 for resource k. Consequently, r4(S)
equals the weight 3,y ri of a maximum-weight antichain Uy, in 6% (). Since
all activities from set Uy pairwise overlap in time, Uy can be regarded as an
active set Ax(S) for S. Schedule § is changeover-feasible precisely if none of
the active sets A4,(S5) with k € R? is forbidden.

Now recall that such a maximum-weight antichain Uy I8 a maximum-
weight stable set in the precedence graph G(6%(S)) equipped with node
weights ry (i € V). Since G(6%(S)) is transitive, stable set Uy can be
determined in O(n®) time by computing a minimum (s,t)-flow u* of valuc
¢*(u*) = rg(S) in the flow network Gy (#%(S)) with node set Vi U {s,t} and
arc set 8%(S) U ({s} x V@) U (Vi x {t}), where nodes i € V are associ-
ated with lower capacities i (cf. Subsection 2.1.1). Example 5.1 shows that
strict order 8%(S) generally does not represent an interval order, for which a
maximum-weight stable set in the precedence graph can be found in linear
time by computing a maximum-weight cligue in the associated interval graph,
cf. Golumbic (2004), Sects. 4.7 and 8.2.

The lower node capacities r;; can be transformed into equivalent arc ca-
pacities by splitting up every node ¢ € ¥ into two nodes i’ and ¢ linked
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by arc {i',i"} with lower capacity ly;v = vy and infinite upper capac-
ity. The 11{'tw0rk flow methods then do not only provide a mininmm {s,#}-
flow u* in GR{0%(S})) but alsc a maxinmum {s,)-cut {U],U}], whose ca-

pacity c-,quai.u_, the minimury flow value ¢{u®) {sec, s.g., Ahuja ot al. 1993,
Sect. 6.5). In addition, it can easily be shown that any maximum {5, 6)-
cut in GR{6*(8)) s a unifoz"miy directed ent containing only forward ares.
Thus, Ax(8) = {i & V2 | (¢, ¢ UL, UY1}. As has already been noticed by
MBhring (1985), Sect. 1.5 Lhe cornputation of & maximum {8, £)-cit may also
be performed in the transitive rednction of GR(E%(S)) (ie., in the network
which arises from Gp(8%(S)) by replacing the arc set with its covering rola-
tion). I that case, any maxinmny (s, t-ent U], U] contains only ares (¢,47
obtained by splitting up some node ¢ € V7, Lo, A(S) = HF eV e U]

To adapt the enumeration schemes for regular and convexifiable objec-
tive functions from Algorithis 2.1 and 3.3, respoctively, 10 the oconrrence of
sequence-dependent chiangeover times, we make the following modifications,
First, we replace the active sets A(S, ) at times ¢ by aciive sets A(S8). i
for some kb € R?, Ax{5) is a forbidden set, we compute the set B of all min-
imal delaying aitoz natives H for F oo %%;;(S) In case of a regular objective
function f, for given B € 8 we Lizuz introduce the disjunctive precedence
constraint

. s e &
e & ZomindS, + o + 480
jefi 1T @'eA{ i Pt y)

between sets A = F\B and B including the changeover thines ﬁfj on k between
ie Aand je BUIF s convexifiable and {4} x B is some minimal delaying
mode with B¢ Band i ¢ A = F\ B, we add ordinary precedence eonstraints

between activity ¢ and all activities § € B, again including the chanpeover
Srres 9%
ties 9.

5.3 Alternative Execution Modes for Activities

In practice ay activity can often be carried out in one out of Bnitely many
alternative execution nodes with different processing times, time lags, and re-
source requirements. The muliiple modes give rise to several types of tradeoffs
permitting s more efficlent use of resonrees. Sometimes the tradeofls include
the consimmption of nonrenewable resources like the project budget. As for ro-
newable resources, the availability of nonrenewable resources is limited, The
availability of nonrenewable regsonrces, however, does not refer 1o individual
points in time bnt to the eptire planying period. Bacli time an activily is
carried out, the residual svailability of a nonrencwable resource is decreaged
by the corresponding rescurce demand. Thus, yonreunewable resources can
be viewed as special cumulative resources {ef. Section 1.3) that are depleted
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but never replenished. This limplies that for nonrenewalie resonrees, resonree-
feasibility solely depends on the selection of activity modes and not on the
schednle. That is the reagon why ponrencewable resonrces can be omitted when
dealing with single-inode project scheduling problenss,

Sinee the early 19805, the {discrete} multi-mode project duration problem
with precedence constraiuts among the activities instead of general tomporal
copstraiits has been treated by several anthors. The case of resource-resonree
tradeotls has already been considered by Elmaghraby {1877}, Sect. 3.4.2. Ex-
act algorithme have been reviewed and their performance hag been tested by
Hartmany and Drex] {1998}, At present, the most efficient method for solving
this probleny is the branchrand-bonnd algorithun of Sprechior and Drexl (1598).
Hartmann (18980), Sect. 7.3, lias compared several howristic approaches. An
experimental performance analysis preserted in the latler reference reveals
that among the tested henristics, the best procedure I8 o genetic algorithin
published iy Hartmann (2001} A special case of the mmilti-mode project dn-
ration problems has been studied by Demenlemeester et al. (2000), who have
developed a branch-and-bound aigorithm for the discrete timne-resonree trade-
off problems. For each real activity, a workload {or a single renewable resonrce
is specified. The alternative execntion modes arise from all undominated jnte-
gral duration-requirement eombinations the product of which is at leas! equal
to the given workload.

For the case of general tenyporal constraints, fonr different algorithuns have
been proposed in lterature. The tabu search procedure by De Reyek and Her-
roelen {1869} performs a local search in the set of possible mode assigirents
Lo activities. For given execution modes, the resulting single-mode problem
is then solved by the braych-and-bound algorithin of De Reyck and Herroe-
len {19980). Franck {1999}, Sect. 7.2, has adapted a priority-rule method by
Kolisch £1895}, Sect. 6.2, to the case of general femporal congtraints. At each
iteration, the activity 1o be scheduled is chosen on the basis of a first prior-
ity rule. A second priority rule provides the execution mode for the selected
activity, A streambived wulti-pass version of this procedure can be fonnd in
Heilmann (2001}, Dorndorf (20023, Ch. 6, has deseribed an extension of the
brapel-and-bound algoritlm by Dorndorf et al. (2000¢) for the siugle-mode
project diration problem {cf. Subsection 3.1.4) fo the multi-iode case, where
mode assignment and activity schednling are iterated alternately. Bricker
and Knust (2003) have presented an adaptation of their lower bound for the
single-mode problem {see Subsection 3.1.3) to the presence of nmltiple exe-
cution modes. The corresponding linear program is again solved by columy-
generation techniques.

In this section we discnss the enmnmeration scheme of a branch-and-bound
precedure proposcd by Heilmany (2003) for the multi-mode project duration
problemn, where the selection of activity medes and the allocation of resonrees
are performed in parallel. The basic prineiple of this relaxation-based emuner-
ation sclieme can be nsed for solving nultimode resource-constrained project
schiednling problems with arbitrary regnlar or convexifiable objective func-
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tions. Roughly speaking, the idea s to consider single-mode problens arising
from mode relazefions where only the nmaveidable resonree requsirements, core
durations, and core time lags oceurring in all selectable execution modes are
taken iito account. The mode relaxations are stepwise refined by assigying
execution modes to activities and thus reducing the sets of selectable modes.
For what follows, we assume thal ouly the requirements for renewable and
nonrenewable resources depend on the mode selection. The case where exeen-
tion modes also differ i requirernents for cmnmdative resonrces can be treated
similarly {sec Trantramm 2601a, Sect. 3.1},

A discrete multi-mode resonree allocation problem decomposes into two
subproblems: the discrete mode assignment problem and the (single-niode)
resource oflocation problem. Let M, denote the set of alternative execntion
modes for activity £ € V', where | M| s 134 @ V¥4 We call a binary vector
&= {2y, ieVimeast; With 300 cop @, < 1 a (partial) assignment of modes
m; € M to activities { & V (‘in assigrment, for short), where g, = 1 if
activity 4 Is carried ot iy mode my; and 2y, = 0, otherwise. An assignment
& > 2 s called an extension of z. An assignment @ satisfying the mode
asstgnmnent constraints

Z Timey — 1 ("' € V) (5?)

mae M
is tormed 8 full essignment. Solving the mode assignment problem consists
in finding a Ml assignment ® such that = complies with the temporal and
nonrenewable-resource constraints. Bach assignment g
single-mode resonree allocation problem.

Now let
Mz} = { M it Em e, Bin, = U

{my} with 2, =1, otherwise

& defines a corresponding

_??‘Fl

be the set of modes that can be selected for activity € in full-assignment exten-
sions 2 > z and let RY be the set of nonrenewable resonrces with availabilities

By e No By rigm, € Zxo we denote the requirement for resouree £ € RPURY
if real activity 4 € V* is executed inn mode my € M, Then

ralZ) = Wi Ta,
M {2}

is the (unavoidable} requirement of activity ¢ € V* for resource k € RPURY
given assigument x. Assignment z is called resonrce-feasible if g satisfies the
nonrenewable-resonree constraints

S risle) < Ry (ReRY) (5.8)

ey
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{i, 7} € E, the associated time lag may depend on the execution modes of
both activities ¢ and 4. Honce, the woiglt of an are (4,3) € E in the nmalti-
mode project network N is a matnix 8 = (Sim,ju, Jrmis My my e, Where the
elements ., sy € Z denote the scalar arc weights that refer to the execution
of activitios ¢ and 7 in modes my € M, and my € M. For assignment g,

d:{x) = min B S i
e A () S A () Al

is the resulting {core) weight of arc (4, 5) in nctwork N{z). An assignment ¢
is called time-feasible if N{z) does not contain any cycle of positive length, A
time- and resource-feasible assigmment is reforred Lo as a feasible assignment.
A gchedule S ig said o be time-feasible with respect {o assignmont z i 8
satisfies the temporal constraints
8§; =& = oi{z) (L)) e E) (5.9}

The set of schedules which are time-feasible with respect 1o assignment x are
denoted by Sy{z)

Define pi, € N to be the processing time H real activity { € V® is executed
in mode my € M. The {core) dnration of activity ¢ € V given assignment g
is

?a’.{i} = }lki}}( Ping

m e (1)

For schedule S, the set of real activities being in progress st thne ¢ then

2ic A8, iz} s the demand for resource k € R at time £ A schedule S
which satisfios the renewablo-rogsource constraints

re(S, g, ) < Ry (heRP, 0<t<d) (5.10)

as well ag the annndative-resonrce constraints {1.20) is called resource-feasible
with respect to assigimment x. By Sp{z) we denote the sct of all schednles sat-
tsfying {5.10), Recall that the resource-feasibility of an assignment z requires
that the nonrenewable-resonree constraints (5.8 are fulilled. A schedale that
i time- and resonrce-feasible with respect to agsignment ¢ s termed feasible
with respoct to . S{z} = Sp{eINSp{x)NSe is the set of all feasible schedules
with respect to 2. The mmlti-mode resource-constrained project schednling
problem: can now be stated as follows:

Minhaize  f{5)

subject 1o Z B, == 1 (i€ V)
meEM (MP)
Tums € 10,1} (ieV, m & M)

SaSp{a)nSplz) N Se
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A feasible solntian ta problem (MP) consists in a schedule-assignment pair
{5,z}), where z s a feasible fill assignment {i.e., a solution ta the mode-
assignment prolidem) and S is a feasihle schedule with respect ta = {ie, a
feasible solution to the respective single-mode praject scheduling prahlem). An
aptimal salution is a feasible salution (S, 2} wilh mininuan abjective functian
value f{5).

From Thearem 112 3 imnediately follows that finding a feasible salu-
tion {S,x) s NP-hard, In addition, Kolisch (1995}, Sect. 2.3, and Schwindt
{16488} have shawn by transformations from KNAPSACK and PRECEDENCE-
CONSTRAINED KNAPSACK, respectively, that the problems of testing whether
there is a resonree-feasible or a time-feasible full mode assigmnent # are al-
ready NP-camplete. Consequently, the resouree relaxation of a mulil-mode
resource allocation problem is NP-hard, Hence, to obtain a problem that can
he solved efficiontly, the mode assigument constraints (5.7} have to be relaxed
ag well, The mede relozation for an assignment 2 then reads

Minimize f{5)
subject ta Sp{z) N Sp{x}nSe

Pz}

Cbviansly, the single-made resaurce-canstrained project scheduling prablem
{P{x)) is a relaxation of all made relaxations {(P{z"}) belonging to extensions
2 of x, le.,

This ohservation is the starting poht for a relaxation-hased empneration
scheme far salving multi-miede problem (MP}. Let p be same relation in node
he the relation polytape belonging fo p and assignment gz, The algorithm
starts with the empty assignment 2 = 0. For the carresponding single-mode
problem (P(z)), schedules are enwmerated as minimal paints of apprapriate
(unions of } relatian polytapes Sp{p, 2}, see Algarithms 3.1 and 3.3, Fach thine
a schedule 5 feasible with respect 1o g has been obiained, the execution mode
of some activity 4 with 3 o0 @, = 0 s fixed sueh that the resulting
assigiment ¢ is still feasible (H there s uo mode my & M, sirch that 27 s fea-
sible, we perform hacktracking). Then, the time-feasibility of & with respect
ta the new assignment z’ is restared, Due to 8{(z') ¢ &{z), S may be not
resoimee-feasihle with respect te 2'. In that case, the empneration of sched-
iles is tesumied by extending the current relation p until a schedule S which
a feasihle fall assignment ¢ has been reached or there is na feasihle extension
of the enrrent assignment 2.

5.4 Continuous Cumulative Resources

In this section we deal with continnous cunmmlative resonrees whose inven-
tory is depleted and replenished at eonstaut rates hy the activities of the
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project. This type of resources has been considered by Schwindt {2002) and
Newmnann et al. (2005) in the context of scheduling problems arising in the pro-
cess industrics. Becently, Sourd and Rogerie (2005) have presented constraing
propagation techuignes for computing lower and upper approximations to the
loading profiles of continnous comulative resonrees,

The concept of continnons cumulative resorrces also covers the renewable
and (discrete) cumulative resources, which we have considered wntil now. For
the case of convex objective functions f, we show how the expanded resource-
constrained project schednling problem can be solved by using a relaxation-
based approach. The bagic principle is again to snbstitute the resource con-
straints info a Anite diginnction of Bnear ncqualities, which can be viewed as
parametcrized precedence constraints between activities.

Let RY be the gset of continuous cumudative resonrces with safety stocks
B, ¢ ZU {—co} and storage capacitics By € Z U {oo}, where ??;. > B
Performing an activity { € V increases the inventory in resource & !\’,‘}
by rip € Z units, Analogonsly to the case of discrete cnnmlative resourees,
wo suppose that B, < Lae‘,i g < By forallk e R"’, whicl ensures that
the terminal mvontmi(,s are within the preseribed bouuds. i 1y < 0, we
again speak of a depletion of resource &, and if vy > 3, we say tha,t: re-
sonree k is veplenished, Depletion and rep lenishments arise at constant rates
Fape o 25/, This means that events ¢ € V¢ deplete and replenish at infi-
nite rates, which corresponds to the setting for diserete cumulative resources,
Since renewable-resource constraints can be expressed by temporal and dis-
crete cumulative-resource constraints, the new model also inchides both types
of resource constraings that have been studied previonsly, By V" and Vk"L we
respectively denote the sets of activities depleting or veplenishing resource A
Vi = V7 UV s the set of all depleting and replenishing activities for re-
sontee k. The resource constraints again say that at any point in fhae, the
inventory level of each resource must be between the safety stock and the
storage capacity.

Now let S be some schedule, By

0, it < 5
31;‘(5, t} L i it 2 Sz g Pi

{t — 53 /p;, otherwise
we denote the portion of activity ¢ € V' that has been processed by time ¢ [f
§ € VE then 2,(5,4) = 0 I 5; < ¢, and 24(5,7) = 1, otherwise. The inventory
in resonrce & € RY at time £ i

(S 8) = Y il S, 1)
i Y

The corresponding loading profile ¥.{S,-} s a right-continmons, pilecewise
affine funetion. The resource constraints can be stated as

RS ty<By (heRY, 0<t<d) (5.11)
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A schedule satisfying resonrce consiraimts (5.11) is called resource-feasible.
Let So denote the set of resource-feasible schednles. The set of all feasible
sehedules is & wm SpnSe. The resource-constrained project schoduling problem
to be dealt with reads as follows:

Minimize f{5) {m{)}
snblect to S € Spnide

where [ is some convex objective lunction. An optimal schednle is a schedule §
solving problem (P,

Next, we explain the basic principle of the solution procedure. For shn-
pliciby of exposition we assume for the moment that Vi, ¢ V* for all ke R,
Stmilarly to the relaxation-based algorithms from Chapter 8, we firgt delete the
resounrce constraints and solve the resulting thne-constrained project sched-
nling problein. Subsequently, resource conflicts are stepwise sorted ont by
refining the relaxation with ew constraints. For notational convenlence we
suppose that all storage capacities are infinite. This can always be ensnred by
the following trassformation {ef Remark 1.21a). For cach resonrce £ € R7,

we sob ;= oo and add a flctitions resonrce & with requirements ry e —rgy,

Let S be an optimal solution to the resource velaxation and assume that
at thne £, the invenlory in some resonvee k € RY falls below the safety stock,
meaning, Sel A containg all activities § & V7 to be completed by time ¢ and
all activities § € V,' 1o be started no earlior than at thue

S;<t—p (Jedav) } {5.12)

5] e +
S; >t e AV
T'he total depletion of the inventory in resonrce k at time £ cansed by activities
€ Aequals % jeanv, Tik- The sctivities § from set B inst be scheduled
in such & way that at time ¢, thelr net replenishment of resource & is greater

sel A. This cau be cusnred as follows, For each aclivity 7 € B, we introdnce
a continuous decision variable oy with

6<a; <1 (je i) {5.18)

providing the portion of activity 7 that will be processed by time £, The
requivernent 1hal the inventory in resource & at time € must not fall below B,

then reads
N -
L Tinity 2 By - Z ¥ik {5.14}
jeh ANV

The coupling between decision variables @; and 5 is achieved by the temporal
constraints {perameterized in 2y}
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S;zt-pizy; {7 BNV } (5.15)
S; <tepizy; {(j€ BV o
Inequalitics {5.15) ensure that for each schednle § satisfyving (5.15) it holds
that x; > ©;(5,1) if activity § € B depletes and z; < 2,(8, ) if activity
i € B replenishes the stock of & Adding constraints (5.12) to {(5.15) o the
relaxation removes the inventory shortage at thne 1.

The inventory in resonrce & attains its minlmum at a point In thine when
some replenishing activily ¢ ls started or when some depleting sotivity 4 is
completed, That is why time £ can always be chosen 1o be equal to 5; for
Some 1 € V:r or equal to 55 -+ for some i € V7, and thns we can replace ¢
in (5.12) and (5.15) by S; or S, -+ pi. We then write 4% and B* instead of
A and B as well as rj}‘ instead of #;. Note that without loss of generality we
con assume i € 4™ for all k € RY and all i € ¥, because the corresponding
inequality {5.12) is always sstisfied. Passing from constants ¢ to variables 5;
ensures thiat only a finite nmmber of constraints have Lo be introdnced hefore
the resource constraints {5.11) are satisfied.

From the above reasoning it follows that 8¢ again represents the unlon
of finitely many polyhedra. The set of all minimal points of Sg, however, is
generally nnconntable, which huoplics that the set AS of all active schedules
ts infinite {and hence so arc all of Hs supersets depicted n Flgure 2.4).

The solntion procedure is now as follows. We solve the convex program

Minbnize f(85)
subject to S € Sy (5.16)
(8.12) to {3.15) for partitions {A™, B¥} gelected

and add new constraints of type (5.12) to {5.15} to problem (5.16) nntil either
the seareh space P becomes void or the resulting schedule 8 is feasible. Then,
we teturn to an alternative partition { A%, B} and proceed untii all alter-
natives have been investigated. Convex program {3.16) can be solved in poly-
nontial tirme because its feasible region P represents a polytope. Of conrse,
the objective function value of any opthnal solution to {5.16} represents a
lower bonmd on the objective Hinction value f{S) of any feasible schedule S
satisfving the added constraints of type (5.12) to (5,15},

Next we discuss some implementation fssues. Assume that the aventory
in some resource k € R falls below the safety stock at thne t = 5; (i € V;\'__’*‘}
or L= 8 4 (i€ V7). To enumerate the sets A* and B™ we construct a
binary tree as follows. Bach level of the tree helongs to one sctivity 7 € V.
For each activity § we branch over the alternatives 7 € A% and 7 € B snd
add the corresponding constraints {5.12) or (5.13}, (5.15), as well as for both
alternatives the relaxation

Z ?"_:':c-’ﬂjk 2> By Z Tk 2: Tik

PRt jeadny;” FEVIARRGHH
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of constraint (5.14} te the convex program {5.16}, Each locaf of the tree corre-
sponds to one distinct partition {A%, B} We can stop the euumeration for
activity ¢ as soon as the invenfory shortage at time 8; or §; + 97 s settled,
even if A% U B% 0 Vi, [ the latter case, it may be necessary to resnme the
branching later on if the shortage reappears while dealing with other resonrce
conflicts. Sinee for each resource £ &€ RY and each sctivity 7 € Vi, the cone
striction of the corresponding sets A% and B™ requires at most [Vi] steps,
the height of the branch-and-bound tree is of order O{IR7In?).

The compntational effort can be rednced considerably by testing whether
the search space P las become void before solving convex program {5.16).
Let dyy be the mininmm thne lag between activities ¢ and § that is implied
by the prescribed temporal constraints, Incqualitios (5,12}, and ineqgnalities
(5.15) where £F is set to be equal to 1if § € V" and equal to 0, otherwise.
Assume that for some activity j £ V, the addition to set A% or B* Jeads to
a new temporal constraint 8; — 8§, 2 6. Then P =0 i 8 +dy; = 0. Iy that
case, the alternative set B or A, respectively, can immediately be selected
for activity 7.

Now let {5 2} be an opthoal selution to {5.16) such that schedule § i
feasible. We then ohtain a feagible schedule 5 with £{58°) < f{5) by

(a) moving all activities § € V. from 4% to B for which {5.12) is active,
{b} moving all activities § € V7 from B* (o A% for which :z:;k ) aud

o

(¢} moving all activities j € V7 from B™ to A™ for which z{ = ¢

and solving convex program (3.16) again. Basced on this dominance rule, fea-
sible sohutions belonging to leaves of the emuneration tree can be improved
and thus the enrrent upper bonnds can be decreased by performing the above
trausformations (a} lo {¢}.

Eveutually, we consider the goneral case inchuding discrete depletions and
replenishments at the occurrence times of events, For cvents § € B Ve
decision variable ©; can be fixed to 0 i j € V" and to 1if § € VI becanse

an event, then 4 must deplete the stock of resource k. Moreover, for an event
J & BV, it may happen that §; = ¢ thongh 2y = 0, Le, oy < 5,4{(5,1).
As a cousequence, the shortage al bime o ay persist after having introdnced
canstraints (5,12} to (5.15), in which case we perforin backiracking. if problem
(f‘) is solvable, the enmwneration tree contalns allernative partitions removing
the shortage,



