
Supplements 

When coping with rcal-lifc rcsourcc allocation problems, somc of thc assump- 
tions of our three basic project scheduling problems may be too restrictive. 
This chapter is dcdicatcd to expansions of the basic models which permit us 
to cover some features that arc frcqucntly encountered in practice. 

In Section 5.1 we deal with break calendars, which specify time intervals 
during which some renewable resourccs cannot be uscd (such as weekcnds or 
night shifts, where skilled staff is not available). In that case, it is often nec- 
essary to relax the requircment that activities must not be interruptcd whcn 
being in progress. Instead, we assume that the execution of certain activities 
can be suspended during brcaks, whercas othcr activitics still must not be 
intcrruptcd. We explain how to perform temporal scheduling computations 
in presence of brcak calendars and outlinc how the enumeration scheme for 
rcgular objective functions discussed in Section 3.1 can be generalized to this 
problem setting. 

When performing projects whose activities are distributed over different lo- 
cations sharing common resources like manpower, heavy machinery, or equip- 
ment, changeover tzmes for tear down, transportation, and reinstallation of 
resource units have to be taken into account. During the changeover, those 
resource units arc not available for processing activities. Due to the transporta- 
tion of resource units, the changeover times arc gcncrally sequcncc-dcpcndcnt, 
which mcans that the time needed for changing over a resource unit between 
the execution of two consecutive activities depends on both activities. In Sec- 
tion 5.2 we show how to adapt the relaxation-bascd approaches to the occur- 
rcncc of sequence-dependent changcovcr timcs. 

In many applications of project management, thc assignment of resources 
to the project activities is not (complctcly) predetermined by technology. We 
may then perform certain activities in alternatme ezecutzon modes, which dif- 
fer in durations, time lags, and resource rcquircmcnts. The exccution modcs 
of an activity reflect tradeoffs betwcen thc timc and rcsourcc demands. For 
examplc, the duration of an activity may bc shortcrlcd by incrcasing the nurn- 
bcr of allotted resourcc units (timc-resource tradeoff) or some rcsources used 
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niay be replaced by other rcsourccs (rcsourcc-rcsource tradeoff). If in that case 
the selection of an appropriate execution mode for each activity in the proj- 
ect planning phase is deferred from the time and resource estimations to thc 
resource allocation step, we obtain a multi-mode resource allocation problem. 
In Section 5.3 we are concerned with relaxation-based proccdures for solving 
multi-mode resource allocation problems with finitely many execution modes. 

As wc have sccn in Section 1.3, the concept of (discrctc) cumulative re- 
sources offers a straightforward way of modclling constraints arising from dis- 
crete material flows in assembly environments. Sometimes, however, invento- 
ries of intermediatc products arc not dcplctcd and rcplcnishcd batchwise at 
thc occurrence of certain events but rather continuously over the execution 
time of consuming arid producing real activities. Such continuous material 
flows are, for example, typical of mass production in the process industries. 
Material flows may also be semicontinuous, which means that facilities may bc 
operated in batch or continuous production modes. In Section 5.4 wc dcvclop 
tlie concept of continuous cumulative resources and we propose a relaxation- 
based approach to solving resource allocation problems with the latter type 
of rcsourccs and convex objective functions. Rcsourcc conflicts are stepwise 
resolved by introducing linear constraints which ensure that a t  the start or 
completion of some activity, the inventory level is between the safety stock 
arid the storage capacity. For each activity we branch over the alternatives 
whcthcr or not the activity contributes to settling thc rcsourcc conflict in 
qucstion. 

In the following Sections 5.1 to 5.4 we closely follow the presentation in 
the book of Ncumann ct al. (2003b), Sects. 2.11, 2.14, 2.15, and 2.12.2. 

5.1 Break Calendars 

In many real-lifc projects, certain renewable resources are not availablc during 
breaks like weekends or scheduled maintenance times. Scheduling the activi- 
tics subject to break calendars is termed calendarization. For what follows, we 
assume that some real activitics may be interrupted during a break, whereas 
others must not be interrupted due to technical reasons. Hence, the set of 
all real activities VU decomposes into the set Vg of a11 (break-)interruptible 
activitics and the set V$ of all non-interruptible activitics. The proccssing 
of interruptible activities i E Vg can only be stopped at the beginning of a 
break and has to bc rcsumcd at the end of the break. This assumptiori distin- 
guishes calendarization from preemptive projcct scheduling problems, where 
activities may be interrupted at any point in time (scc, c.g., Dcmeulcmccstcr 
and Herroelen 1996). Furthermore, for each interruptible activity i E Vg, a 
minimum execution t ime ei E W is prescribed during which i has to bc in 
progress without being suspended, eg . ,  e, = 1. To simplify notation, we set 
ei := pi for non-intcrruptible activities i E V,+rid assume that for activities 
i E Vc, tlie time between any two succcssive breaks is not less than e i .  
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In this section we first describe procedures presentcd by Franck et al. 
(20010) for the temporal scheduling of projccts subject to break calendars for 
activitics and prescribed time lags. We then briefly sketch how thc relaxation- 
bascd approach for regular objective functions discussed in Section 3.1 can be 
adapted to the presence of brcak calcndars. Preliminary versions of the tempo- 
ral scheduling methods have been dcviscd by Zhan (1992) and Franck (1999), 
Sect. 3.3. An alternative approach can be found in Trautmann (2001b). Here, 
the calendar-dependent precedence relationships between activitics arc taken 
into account by distinguishing between start-to-start, start-to-completiori, 
completion-to-start , and completion-to-complction timc lags. 

A break calendar can be regardcd as a right-continuous step function b : 
R 4 {0,1) wherc b(t) = 0 if time t < 0 or if t falls into a break, and b(t) = 1, 

t' othcrwisc. St b ( ~ ) d r  is the total working time in interval [t, tl[. In practice, 
different renewable resources k E RP may have different calendars. We then 
obtain the corrcsponding activity calendars bi for activitics i E Va by setting 
bi(t) := 0 exactly if i requires some resource k E RP which is not available 
at time t. If bi(t) = 0, we have to suspend the execution of activity i E V$ 
being in progress at time t. For activities i E V;, the timc interval between 
the start and completion of i must not contain any timc t whcre bi(t) = 0. 

Thc constraints arising from minimum execution times ei can be stated as 
follows: 

bi(7) = 1 ( i €  Va, Si < T  < S i + e i )  (5.1) 

If i E Vz;, (5.1) means that the execution of i must not be interrupted by a 
brcak. 

Let Ci 2 Si +pi  again denote the completion timc of activity i E Va. In 
interval [S,, Ci[, activity i is in progress at time t precisely if bi(t) = 1. Thus, 
given start time Si, the completion time Ci(Si) of i is uniquely dctcrmined by 

Clearly, minimum and maximum time lags may dcpend on calendars, too. 
For example, a precedence constraint between activities i and j refers to the 
completion time Ci and thus to the calcndar bi of activity i .  Thereforc, wc 
introduce a time lag calendar bij for each arc (2 ,  j )  E E of project network N. 
Point in time t is taken into account when computing the total working 
time between the starts of activitics i and j exactly if bij(t) = 1. That is, 
J,'. bZj(r)dr equals the total working timc in interval [S,, Sj[ if Si < Sj and 
equals the negative total working time in intcrval [Sj, Si[, otherwise. 

The actual minimum difference Aij between start times Si and Sj that is 
prescribcd by arc (i, j )  E E depends on start time Si and calendar bij: 

Aij(Si) = min{t 2 0 I J;, bi i ( r )  d r  > 6ij) - Si ((i ,  j )  E E) 

Si + Aij(S,) is the earliest point in time t 2 0 for which thc total working 
timc in interval [Si, t [  or [t, Si[, respectively, is grcatcr than or equal to Idij[. 
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Since b i j ( t )  E {0,1) for all t > 0, it holds that l iSi j (Si) l  > Ihijll and A i , ( S i )  
and hij have the same sign. 

For temporal scheduling, thc temporal constraints Sj  - Si  2 hij for all 
( i ,  j )  E E have to be replaced by 

which due to b i j ( t )  2 0 for all t E R can also be written as 

The interpretation of inequality (5.2) is as follows. If hij > 0, then the to- s tal working time Js: b i j ( r ) d r  between the starts of activity i a t  time Si 
and the start of activity j at tirne S j  must be at least bii >If dii < 0, 

S 
then JsJ bij ( r ) d r  > hij means that the total working time ' b i j ( r ) d r  = s, J '  b i ; ( i ) d r  betwcen S j  and Si must not cxcced h i i  Notice that for rnin- 
irnum tirnc lags dy" = hij > 0, constraint (5.2) is at least as  tight as the 
ordinary temporal constraint S ,  - Si  > h i j ,  whereas maximum time lags 
d y x  = -hij > 0 arc relaxed by considering breaks. Given start tirne Si for 
activity i, the miriiniurn start time S j  of activity j satisfying (5.2)  is 

Constraints (5 .1 )  and (5.2) are referred to as calendar constraints.  A sched- 
ulc S satisfying the calendar constraints is called calendar-feasible. 

We now explain how to integrate the calendar constraints into the corn- 
putation of earlicst schedulc ES by modifying the label-correcting method 
given by Algorithm 1.1. Algorithm 3.2 for the minimization of regular ob- 
jective functions subject to temporal and disjunctivc precedence constraints 
can be adapted similarly. The problem of finding the earliest calendar-fcasiblc 
scllcdule ES can be forniulated as follows: 

Minimize Si 

subject to (5.1)  and (5.2)  

si > 0 (2 E V )  

We start the label-correcting algorithm with E S  = (0, -m, . . . , -m) and 
successively delay activities until all calcndar constraints are satisfied. At the 
beginning, qucuc Q only contains the projcct beginning event 0. At each 
iteration, we dequeue an activity z E V from Q. If i is a real activity, 
we check whether start time ES, complies with calendar b, by computing 
the earlicst point in time t* > ES, for which there is no break in interval 
[t*,t* + e,[ (cf. constraints (5.1)) .  In case of E S ,  < t*,  the start of activity i 
must be delayed until time t*. Next, we check inequalities (5.2)  for all arcs 
( i ,  j )  E E with initial node i .  To this end, we compute the earliest start time 
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t* := minit 2 ESj I JLst bij(r)dr 2 Sii) of activity j given start timc ESi 
for activity i. If ESj < t*, schedule ES docs not satisfy the corresponding 
prescribed time lag, and thus we increase ESj up to t*. In that case or if 
bj(r) = 0 for some t* < T < t* + ej,  wc enqueue j to Q if j $ Q. Algo- 
rithm 5.1 summarizes this procedure. 

Alaorithm 5.1. Earliest calendar-feasible schedule 

Input: MPM project network N = (V, E ,  6 ) ,  partition {Vg, VZZ of set V U ,  activity 
calcndars b, for i E V a ,  time lag calendars bij for (i,  j )  E E. 

Output: Earliest schedule ES.  

set ESo := 0, Q := {0} ,  and ES, := -m for all i E V \ Q; 
while Q # 0 do 

dequeue i from Q; 
if i E V" then 

determine t* := min{t > ESi I b , ( ~ )  = 1 for all t < T < t + e , } ;  
if t* > a then terminate; (*there is no time-feasible schedule *) 
else if ES, < t* then set ES, := t* ;  

for all ( 2 ,  j )  E E do 
determine t* := min{t 2 ES, I SLS, bij ( 7 ) d ~  > 6,j); 
if ES, < t* then 

set ESj := t*;  
if j $ Q then enqueue j to Q; 

if j E Va \ Q and b , ( ~ )  = 0 for some t* < T < t* + e3 then enqueue j to Q; 
return earliest schedule E S ;  

Let ,O denote the number of brcaks in all activity and time lag calendars. If 
somc activity i is inspccted more than n(/3+1) times, then thcrc is no schedule 
satisfying the calendar constraints, and the algorithm can be stopped. Franck 
et al. (2001~)  have shown that if the calcndars are given as sorted lists of 
start and cnd timcs of breaks, Algorithm 5.1 can be implcmcnted to run in 
O(mn/3) time. 

The latcst schcdulc L S  can be computed by using a similar labcl-correcting 
procedure again starting at node 0 and procccding from terminal nodes j to 
initial nodes i of arcs ( i , j )  E E. In difference to Algorithm 5.1, t* is set to be 
the lastest time for which condition (5.1) or (5.2), respectively, is fulfilled (for 
details we refer to Neumann et al. 2003b, Sect. 2.11). 

The enumeration scheme for resource allocation problems with regular ob- 
jective functions (see Algorithm 3.1) can be used without almost any modifica- 
tion for thc casc of calcndar constraints as wcll. Schedule S = m i n ( ~ , , ~ S ~ ( p ) )  
is then computed by the adaptation of Algorithm 3.2 to the casc of break cal- 
cndars, where the calendars b,, for pairs ( z , ~ )  E p coincide with calendars b, 
if z E V a  and are given by bag(t) = 1 for all 0 < t < 2 if z E V".  ST(^) now 
denotcs the set of all schedules satisfying the calendar constraints (5.1) and 
(5.2) for rclation network N(p). Similarly to the case without calendars, it 
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can be shown that set ST(p), though generally being disconnected, possesses 
a unique minimal point (cf. Franck 1999, Sect. 3.2) and that this property 
still carries over to the union U p E p S ~ ( p )  of sets  ST(^). 

5.2 Sequence-Dependent Changeover Times 

This section is concerned with sequence-dependent changeover times arising 
when several (sub-)projects using conirnon renewable resources are perfornied 
simultaneously at different sites (multi-site scheduling, see cg . ,  Saucr et al. 
1998). When a unit of resource k E RP passes from the execution of an 
activity i at  a location a to an activity j to be carried out at a different 
location b,  the unit has to be torn down after the completion of i ,  transported 
from a to b, and put into service for processing j .  Thus, the changeover time 
of resource k between the execution of activities i and j generally depends on 
resource k and on both activities i and j .  

There is an extensive literature dealing with sequence-dependent change- 
overs in shop-floor environments, where changeover times are caused by re- 
placing tools or cleaning. The great majority of the papers considers the prob- 
lem of minimizing the total cost associated with changeovers (for a literature 
review we refer to Aldowaisan et al. 1999). Brucker and Thiele (1996) have 
devised a branch-and-bound algorithm for a general-shop problem where the 
nlakespan is to be minimized subject to precedence constraints and sequence- 
dependent changeover times between operations. Kolisch (1995), Cli. 8, has 
shown how to model changeover times between activities of a project by in- 
troducing alternative execution modes for the activities (see Section 5.3). The 
changeover times between two activities are assumed to be equal to a sequence- 
independent setup time or equal to zero. Moreover, the capacity Rk of each 
resource k E R P  equals one. Trautmann (2001a), Sect. 3.3, has devised a 
branch-and-bound algorithm for minimizing the project duration in case of ar- 
bitrary resource capacities Rk, single-unit resource requirements r i k  E (0, I ) ,  
and general sequence-dependent changeover times. 

In the sequel, we drop the assumption of single-unit resource requirements 
and consider any regular or convexifiable objective function f .  Let Vz := 
{ i  E V a  I r i k  > 0) be the set of all activities using resource k E R P .  With 
19:~ E Z>o we denote the changeover time from activity an i E VL to an 
activity 7 E V t  on resource k, where 29ti = 0 for all i E V;. We suppose that 
the weak triangle inequality 

is satisfied for all k E R P  and all h, i , j  E V t .  This assumption is generally met 
in practice because otherwise it would be possible to save changeover time by 
processing additional activities. For notational convenience we additionally 
assume that there are neither changeovers from the project beginning event 0 
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to activities i E Va (setups) nor changeovers from activities i E Va to the 
project termination event n + 1 (teardowns). The latter condition can always 
be fulfilled by introducing the minimum time lags d z Z n  = ~ ~ X & R P : ~ E V , U  d i i  
and d y z l  = maxkE~~:iEV; df,,+l and then putting d i ,  := 19:,,+~ = 0 for all 
Ic E RP and all i E Vg. 

The resource-constrained project scheduling problem (P) with sequence- 
dependent changeover times can be formulated as follows. We strivc at min- 
imizing objective function f such that all temporal and cumulative-resource 
constraints arc observed and at any point in time, the demands for renewable 
resources by activities arid changcovers do riot exceed the rcspective resource 
capacities. More precisely, let for given resource k E RP, Xk : VE + P(N) be 
a mapping providing for each activity i E VE the set of units of resource k 
processing activity i ,  i.e., 

We call a schedule S changeover-feasible if for each resourcc k E RP, map- 
ping XI, can be chosen such that 

Sj 2 si + p l  + 29; 
(i, j E Vg : i # j ,  Xk(i)  n Xk(j) # 0) (5.5) or Si 2 Sj + p, + d;, 

and 
( 2 )  1 ,  . } (2  E Vg) (5.6) 

(5.5) says that if there is a unit of resource k proccssing both activities i 
and j, then activitics i and j (including the possible changeover in between) 
must not overlap. (5.6) limits the availability of resource k to Rk units. Since 
all changeover times are nonnegative, a changeover-feasible schedule always 
observes the rencwablc-rcsourcc constraints (1.7). 

In the following, we develop an equivalcnt charactcrization of the change- 
ovcr-feasibility of schedules, which will serve as a basis for thc solution 
method discussed later on and which draws from a model used by Nagler 
and Schonherr (1989) for solving time-resource and time-cost tradeoff prob- 
lcms. The underlying concepts go back to a model for aircraft schcduling 
presented in Lawler (1976), Sect. 4.9. A similar tanker scheduling problem 
has already been studied in an early paper by Daritzig and Fulkcrson (1954). 
Let S be some schedule and let k E RP be a renewable resourcc. Thc ana- 
logue to schedule-induced strict order O(S) introduced in Subsection 2.1.1 is 
thc relation 

0"s) := {(i, j )  E Vt x VE I Sj 2 Si + p ,  + dtj} 

Owing to the weak triangle inequality and because pi > 0 for all i E Va, rela- 
tion Ok(S) is transitive and asymmetric and thus represents a strict order in 
set Vt .  In contrast to the case without changeover times, however, Ok(S) does 
not represent an interval order in general. We illustrate the latter statement 
by an example. 
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Example 5.1. Consider the schedule S depicted in Figure 5.1a and assume 
tha t the changeover times are -̂ 1̂2 = 1̂ 34 = 0 and di^ = "0^2 — 1- The 
strict order induced by schedule S is B(S) = {(1,2), (3 ,4)} , whose precedence 
graph G{0{S)) = 2P2 is shown in Figure 5.1b. Since a strict order 9 is an 
interval order if and only if its precedence graph does not contain the parallel 
composition 2P2 of two arcs as induced subgraph (see, e.g., Mohring 1984 or 
Trotter 1992, Sect. 3.8), 0{S) is not an interval order. 

1 2 

Fig. 5 .1. Schedule-induced strict orders are no longer interval orders: (a) Gantt 
chart for schedule S; (b) precedence graph G{0{S)) 

Let for given schedule S and resource k G IZ^, Xk be a mapping satisfying 
conditions (5.4) and (5.5) and let rk{S) := \Ui^Y^Xk{i)\ denote the number of 
resource units used. Clearly, S is changeover-feasible exactly if rk{S) < Rk for 
all k e IZP. We consider an antichain U in schedule-induced strict order 6^{S). 
It follows from the definition of 0^{S) tha t [Si, 5^ -hpi + ^^j [ D [Sj, Sj +pj + d^- [ 
^ 0 for any two activities i, j G U. (5.5) then implies tha t Xk{i) H Xk{j) = 0 
for any i, j G U. This means tha t | Ui^u Xk{i)\ = Ezef/ \^k{i)\ = Y^ieu'^ik-
On the other hand, it is obvious tha t for any subset U' C V^ ^ the number 
I VJi^u' Xk{i)\ of resource units occupied by activities from U' is less than or 
equal to the joint requirements Yli^U' '^^k for resource k. Consequently, rk{S) 
equals the weight Y2ieu ^«^ ̂ ^ ̂  maximum-weight antichain Uk in 9^{S). Since 
all activities from set Uk pairwise overlap in time, Uk can be regarded as an 
active set Ak{S) for S. Schedule S is changeover-feasible precisely if none of 
the active sets Ak{S) with k G 1Z^ is forbidden. 

Now recall tha t such a maximum-weight antichain Uk is a maximum-
weight stable set in the precedence graph G{9^{S)) equipped with node 
weights Tik (i G VJf). Since G{9^{S)) is transitive, stable set Uk can be 
determined in 0{n^) t ime by computing a minimum (5, ̂ )-flow u^ of value 
(l)^{u^) = rk{S) in the flow network Gk{9^{S)) with node set V^ U {s,t} and 
arc set 9^{S) U {{s} x Vj^) U (Vjf x {t}), where nodes i G Vj^ are associ
ated with lower capacities Vik (cf. Subsection 2.1.1). Example 5.1 shows tha t 
strict order 9^{S) generally does not represent an interval order, for which a 
maximum-weight stable set in the precedence graph can be found in linear 
t ime by computing a maximum-weight clique in the associated interval graph, 
cf. Golumbic (2004), Sects. 4.7 and 8.2. 

The lower node capacities rik can be transformed into equivalent arc ca
pacities by splitting up every node i G Vj^ into two nodes z' and i" linked 
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by arc (il,i") with lower capacity liri,, = r i k  and infinitc upper capac- 
ity. The nctwork flow methods then do not only provide a minimum (s, t)- 
flow u q n  Gk(Qk(S))  but also a maximum ( s ,  t)-cut [UL, U;], whose ca- 
pacity equals thc minimum flow valuc 4(uk) (see, e.g., Ahuja et al. 1993, 
Sect. 6.5). In addition, it can easily be shown that any niaximum (s , t ) -  
cut in G k p k ( s ) )  is a uniformly directed cut containing only forward arcs. 
Thus, &(S) = {i E V{ I (il,il') E [UL, UL]}. As has already been noticed by 
Mohring (1985), Sect. 1.5, the computation of a maximuni ( s ,  t)-cut may also 
bc pcrformcd in the transitive reduction of G k ( ~ k ( ~ ) )  (i.e., in the network 
which ariscs from Gk(Bk(s)) by replacing the arc set with its covering rcla- 
tion). In that casc, any maximum (s, t)-cut [UA, UL] contains only arcs (it ,  i") 
obtained by splitting up some node i E V{, i.e., Ak(S) = {i E V{ I i' E UL}. 

To adapt the enumeration schemes for regular and convcxifiablc objec- 
tive functions from Algorithms 3.1 and 3.3, rcspectively, to the occurrence of 
sequence-dependent changeover times, we make the following modifications. 
First, we replacc thc activc scts A(S, t )  at times t by active sets Ak(S).  If 
for some k E R P ,  &(S) is a forbidden sct, we compute thc sct B of all rnin- 
irnal delaying alternatives B for F = Ak(S) .  In casc of a rcgular objective 
function f ,  for given B E B we then introduce the disjunctivc precedcncc 
constraint 

min S. > min(S, + pi + 19:j) 
jcB - G A  . 

between scts A = F \ B  and B including the changcovcr times 6fj on k between 
i E A and j E B.  If f is convcxifiablc and { i }  x B is some minimal delaying 
mode with B E B and i E A = F \ B ,  we add ordinary precedence constraints 

between activity i and all activities j E B, again including thc changcovcr 
times 6fj. 

5.3 Alternative Execution Modes for Activities 

In practice an activity can often be carried out in one out of finitely many 
alternativc execution modes with different processing times, time lags, and rc- 
source requirements. Thc multiple modcs give rise to several types of tradeoffs 
permitting a more efficient use of resources. Sometimes the tradeoffs include 
the consumption of nonrenewable resources likc the project budget. As for rc- 
newable resources, the availability of nonrenewable resources is limited. The 
availability of nonrcnewable resources, however, does not refer to  individual 
points in time but to the cntire planning period. Each time an activity is 
carried out, the rcsidual availability of a nonrenewable resource is decreased 
by thc corresponding resource demand. Thus, nonrcnewablc resources can 
be viewed as spccial cumulative resources (cf. Section 1.3) that are depleted 
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but never replenished. This implies that for nonrenewable resources, resource- 
feasibility solely depends on the selection of activity modes and not on the 
schedule. That is the reason why nonrenewable resources can be omitted when 
dealing with single-mode project scheduling problems. 

Since the early 1980s, the (discrete) multi-mode project duration problem 
with precedence constraints among the activities instead of general temporal 
constraints has been treated by several authors. The case of rcsourcc-rcsourcc 
tradeoffs has already been considered by Elmaghraby (1977), Sect. 3.4.2. Ex- 
act algorithms havc bcen rcvicwcd and their performance has been tested by 
Hartmann and Drcxl (1998). At present, the most cfficicnt method for solving 
this problcm is the branch-and-bound algorithm of Sprechcr and Drcxl (1998). 
Hartmann (1999b), Sect. 7.3, has compared several heuristic approaches. An 
cxpcrimental performance analysis presented in thc lattcr reference reveals 
that among thc tcstcd hcuristics, the best procedurc is a genetic algorithm 
published in Hartrnann (2001). A special case of the multi-mode project du- 
ration problem has been studied by Demeulemeester et al. (2000), who havc 
developed a branch-and-bound algorithm for the discrete time-resourcc tradc- 
off problem. For each real activity, a workload for a single renewable resource 
is specified. The alternative execution modes arisc from all undominatcd inte- 
gral duration-requirement combinations the product of which is at least cqual 
to the given workload. 

For the case of general temporal constraints, four different algorithms have 
been proposcd in literature. The tabu search procedurc by De Reyck and Her- 
roelen (1999) performs a local search in the set of possible mode assignments 
to activities. For givcn exccution modes, thc resulting single-mode problem 
is then solved by the branch-and-bound algorithm of De Reyck and Herroc- 
len (1998~) .  Franck (1999), Sect. 7.2, has adapted a priority-rule method by 
Kolisch (1995), Sect. 6.2, to the case of general temporal constraints. At each 
iteration, the activity to be scheduled is choscn on thc basis of a first prior- 
ity rule. A second priority rule providcs the execution mode for the selected 
activity. A streamlined multi-pass version of this procedure can be found in 
Heilmann (2001). Dorndorf (2002), Ch. 6, has described an extension of the 
branch-and-bound algorithm by Dorndorf et al. (2000~) for the single-mode 
project duration problem (cf. Subsection 3.1.4) to the multi-mode case, where 
mode assignmcnt and activity scheduling are iterated alternately. Bruckcr 
and Knust (2003) have presentcd an adaptation of thcir lowcr bound for the 
single-mode problem (see Subscction 3.1.3) to the prescncc of multiple exe- 
cution modes. The corresponding linear program is again solved by column- 
generation techniques. 

In this section wc discuss thc cnumcration schcmc of a branch-and-bound 
procedure proposed by Heilmann (2003) for the multi-mode project duration 
problem, where the selection of activity modes and the allocation of resources 
are performed in parallel. The basic principle of this rclaxation-based enumer- 
ation scheme can be used for solving multi-mode resource-constrained project 
scheduling problems with arbitrary regular or convexifiable objective func- 
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tions. Roughly spcaking, the idea is to consider single-modc problcms arising 
from m,ode relaxations where only thc unavoidable rcsourcc rcquircmcnts, core 
durations, and core time lags occurring in all selectable execution modes are 
taken into account. Thc mode relaxations are stepwise refined by assigning 
cxccution modes to activities and thus rcducing the scts of selectable modcs. 
For what follows, we assume that only the requirements for renewable and 
nonrcnewable resources depend on the mode selection. The case where execu- 
tion modcs also differ in requirements for cumulative resources can be treated 
similarly (see Trautmann 2001a, Sect. 3.1). 

A discrete multi-mode rcsourcc allocation problem decomposcs into two 
subproblcms: thc discrete mode assignment problem and the (single-mode) 
resource allocation problem. Let Mi denote the set of alternative execution 
modes for activity i E V, where ]Mil = 1 if i E V". We call a binary vector 

< 1 a (partial) assignment of modes g = ( g i m , ) i t ~ , m , € ~ ~  with gim, - 
mi E Mi to activities i E V (an assignment, for short), where gin,% = 1 if 
activity i is carried out in mode m, and ximz = 0, otherwise. An assignment 
x' > g is called an extension of g .  An assignment x satisfying the mode - 

assignrnent constraints 

is tcrmed a full assignment. Solving the mode assignment problem consists 
in finding a full assignmcnt x such that x complies with the temporal and 
nonrenewable-resource constraints. Each assignment g dcfincs a corresponding 
singlc-mode resource allocation problem. 

be the set of modes that can be selected for activity i in full-assignment exten- 
sions rc > g and Ict R" be the set of nonrenewable resources with availabilitics 
Rk E W. By rzknL, E Z>O we denote the requirement for resource k E R P  U R" 
if real activity i E Va executed in modc rn, E M, .  Then 

is the (unavoidable) requirement of activity i E Va for resource k E R P  U RV 
given assignment g. Assignment n: is called resource-feasible if g satisfies the 
nonrenewable-resourcc constraints 

Alternative assignments g arc associated with different single-mode project 
nctworks N ( g ) .  Without loss of gcncrality, we assume that the node set V 
and thc arc set E of N ( g )  are the same for all assignments g. For each arc 
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( 2 , ~ )  E E ,  the associated timc lag may depend on the execution modes of 
both activities z and j. Hence, thc wcight of an arc ( z , j )  E E in the multi- 
mode project network N is a inatiix = (61nL,J7rL3)rrL, E M ,  ,m, Em3, where the 
elements 6,mt,7,7 E Z denote the scalar arc wcights that refer to the execution 
of activitics z and j in modes m, E M ,  and m3 E M I .  For assignmcnt &, 

is thc rcsultirig (core) weight of arc ( i , j )  in nctwork N(g) .  An assignment x 
is called time-feasible if N ( g )  does not contain any cycle of positive length. A 
time- and resource-feasible assignment is rcfcrred to as a feasible assignment. 
A schedule S is said to be time-feasible with respect to assignmcnt g if S 
satisfies the temporal constraints 

The set of schedules which are time-feasible with respcct to assignment g arc 
denoted by ST ( g )  

Dcfinc p,,% E W to be the processing time if real activity i E V a  is executed 
in mode m,  E M,.  Thc (corc) duration of activity i E V given assignmcnt g 
is 

p,(z) := min pam% 
~ % € M z ( & )  

For schedule S ,  the set of real activities being in progrcss at time t then 
cquals A ( S , g , t )  := { i  E V a  I S, < t < S, + p,(g)} arid rk(S ,g ,  t )  := 
C,Ea(s,l,r) r,i;(g) is thc demand for rcsourcc k t R" at time t .  A schedule S 
which satisfies thc renewable-resource coiistraints 

as well as the cumulative-resource constraints (1.20) is called resource-feasiblc 
with respect to assignment x. By Sn(g)  we denote the set of all schcdules sat- 
isfying (5.10). Rccall that the rcsourcc-feasibility of an assigrinient g requires 
that the nonrenewable-resource constraints (5.8) are fulfilled. A schedulc that 
is time- and rcsourcc-fcasiblc with rcspcct to assignment g is termed feasiblc 
with respcct to g. S ( g )  = ST(g)nSR(g)  nSC is the sct of all feasible scliedules 
with rcspcct to g. The multi-rnodc rcsourcc-constrained project scheduling 
problem can now be statcd as follows: 

Minimizc f ( S )  I 
subjcct to ximi = 1 (i E V )  

m,EM,  

X i m ,  E (0, I }  ( i  E V ,  m,, E M i )  

s E ST ( x )  n Sn ( x )  n Sc 
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A fcasible solution to problem (MP) consists in a schedule-assignment pair 
(S,x) ,  where x is a feasible full assignment (i.e., a solution to thc mode- 
assignment problem) and S is a feasible schedule with respect to x (i.e., a 
feasible solution to tlie respective single-niode projcct schcduling problcm). An 
optimal solution is a feasible solution (S, x)  with minimum objcctive function 
valuc f (S). 

From Theorem 1.12 it immediately follows that finding a feasible solu- 
tion (S, x) is NP-hard. In addition, Kolisch (1995), Scct. 2.3, and Schwindt 
(19986) have shown by transformations from KNAPSACK and PRECEDENCE- 
CONSTRAINED KNAPSACK, respectively, that the problems of testing whcthcr 
there is a resource-feasible or a time-feasible full mode assignment x are al- 
ready NP-complete. Consequently, the resource rclaxation of a multi-mode 
resource allocation problcm is NP-hard. Hcncc, to obtain a problem that can 
be solved efficicntly, the modc assignment constraints (5.7) have to be relaxed 
as wcll. Thc mode relaxatzon for an assignment g then reads 

Minimize f (S) 

subject to  ST(^) n Sn(g)  n Sc 

Obviously, the single-mode resource-constrained project schcduling problcm 
(P(g)) is a relaxation of all mode relaxations (P(zl)) belonging to extensions 
x1 of g, i . ~ . ,  - 

S(a') c S(:) (z' 2 z )  
This observation is the starting point for a relaxation-based cnumeration 
scheme for solving multi-mode problem (MP). Let p bc somc rclation in node 
set V, and let S ~ ( p , g )  := { S  E ST(.) I SJ > St + pt(g) for all ( 5 , ~ )  E p) 
be the relation polytope belonging to p and assignment g .  Thc algorithm 
starts with the empty assignment g = 0. For the corrcsponding single-mode 
problem (P(g)),  schedules are enumerated as minimal points of appropriatc 
(unions of) relation polytopes ST(p, g), see Algorithms 3.1 and 3.3. Each time 
a schedule S feasible with respect to g has been obtained, tlie execution mode 
of some activity i with C7rL,EM, gtm, = 0 is fixed such that the resulting 
assignment g' is still feasible (if there is no mode m, E M, such that g' is fea- 
sible, we perform backtracking). Then, the time-feasibility of S with respect 
to thc new assignment g' is restored. Due to S(gl)  S(g) ,  S may bc not 
resource-feasible with respect to g'. In that case, the enumeration of sched- 
ules is resumcd by cxtending the current relation p until a schedulc S' which 
is feasible with respect to g' has been found. These steps are reiterated until 
a fcasible full assignment x has been reached or there is no feasible extension 
of the current assignment gl. 

5.4 Continuous Cumulative Resources 

In this section wc deal with continuous cumulative resources whose inven- 
tory is dcpleted and replenished at constant rates by the activities of the 
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project. This type of resources has been considered by Schwindt (2002) and 
Neumann et al. (2005) in the context of scheduling problems arising in thc pro- 
cess industries. Recently, Sourd arid Rogcric (2005) have presented constraint 
propagation techniques for computing lower and upper approximations to the 
loading profiles of continuous cumulative rcsources. 

The concept of continuous cumulative resources also covcrs the renewable 
and (discrete) cumulativc rcsources, which we have considered until now. For 
the case of convex objectivc functions f ,  wc show how the expanded resourcc- 
constrained project scheduling problem can be solved by using a rclaxation- 
based approach. The basic principle is again to substitute the rcsourcc con- 
straints into a finite disjunction of linear incqualities, which can be viewed as 
pararnetcrized preccdcnce constraints between activities. 

Let RY be the sct of continuous curnulativc resources with safety stocks 
Rk E Z U {-oo) and storage capacities zk E Z U {oo), where Rk > I&. - 
Performing an activity i E V incrcascs the inventory in resource k E R Y  

by r,k E Z units. Analogously to the case of discrete cumulative resources, 
wc suppose that Rk < CiEV rik < & for all k E %Y, which ensures that 
the ternlirial inventories are within the prescribed bounds. If r i k  < 0, we 
again spcak of a deplction of resource k ,  and if r i k  > 0, we say that re- 
source k is replenished. Depletion and replenishments arise at constant rates 
r i k  = r .  ,k / pi This mcans that evcnts i E Ve deplcte and replenish at infi- 
nite rates, which corresponds to the setting for discrete cumulative resourccs. 
Since renewable-resource constraints can be expressed by temporal and dis- 
crete cumulative-resource constraints, the new model also includes both types 
of resourcc constraints that have bcen studicd previously. By VL and V z  we 
respectively denote the sets of activities depleting or replenishing resource k .  
Vk := VL U V ,  is the set of all depleting and replenishing activitics for re- 
source k. The resource constraints again say that at any point in time, the 
inventory level of each resource must be between the safety stock and thc 
storage capacity. 

Now let S be some schedule. By 

0, if t < S, 
1, i f t  2 S ,+p i  
(t - S,)/pi, otherwise 

we denote the portion of activity i E V that h a  been processed by time t. If 
i E V", then x,(S, t )  = 0 if Si < t ,  and xi(S, t)  = 1, otherwise. The invcrltory 
in resource Ic E %Y at time t is 

The corrcsponding loading profile Fk(S, .) is a right-continuous, piecewise 
affine function. The resource constraints can be stated as 
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A schcdulc satisfying resource constraints (5.11) is called resource-feasible. 
Lct Sc dcnote the set - of resource-feasiblc schedules. The set of all feasible 
schedules is S = STnSc. The resource-constrained project scheduling problem 
to be dealt with reads as follows: 

Minimize f (S) 
subject to S E ST n Sc 

where f is some convex objective function. An optimal schcdulc is a schcdulc S 
solving problem (P). 

Next, wc cxplain the basic principle of the solution proccdure. For sim- 
plicity of exposition we assume for the moment that Vk C. V" for all k E %?. 
Similarly to the relaxation-bascd algorithms from Chapter 3, we first delete the 
resource constraints and solve the resulting time-constrained project sched- 
uling problern. Subsequently, resource coriflicts are stcpwisc sortcd out by 
refining the rclaxation with new constraints. For notational convenience we 
suppose that all storage capacities arc infinite. This can always be ensured by 
the following transformation (cf. Rernark 1.21a). For each resourcc k E R"', 
we sct XI, := ca and add a fictitious resource k' with requircmerlts r,k, = -r 

- zk 

for all i E Vk, safety stock I lk ,  = -Rk, and storagc capacity &, = oo. 
Let S be an optimal solution to thc resource relaxation and assume that 

at timc t,  the invcntory in some rcsource k E 727 falls below the safety stock, 
i.e., Fk(S, t )  < &. We partition Vk into two sets A and B with the following 
mcaning. Set A contains all activities j E V[ to be complctcd by timc t and 
all activities j E V: to bc started no earlier than at time t: 

The total depletion of the inventory in resource k at tinlc t caused by activitics 
j E A equals - CJEAnV,- r,b The activities j from set B must be scheduled 
in such a way that a t  time t ,  their net replenishment of resourcc k is greater 
than or equal to the shortfall - CJEAnVL r,k causcd by the activitics from 
set A. This can bc cnsurcd as follows. For each activity J E B ,  wc introducc 
a continuous decision variablc x, with 

providing the portion of activity j that will be processed by time t. The 
requirement that the inventory in resource k at time t must not fall below & 
then reads 

Thc coupling between decision variables z, and S, is achievcd by the tcmporal 
constraints (paramctcrizcd in 2,) 
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Inequalities (5.15) ensure that for each schedule S satisfying (5.15) it holds 
that x j  > z j ( S , t )  if activity j E B depletes and zj < z j (S , t )  if activity 
j E B rcplenishcs the stock of k.  Adding constraints (5.12)  to (5.15) to the 
relaxation removes the inventory shortage at tirne t .  

The inventory in resource k attains its minimum at a point in time when 
some replenishing activity i is started or when sonie depleting activity i is 
complctcd. That is why time t can always be chosen to be cqual to S, for 
somc i E V z  or equal to Si + p, for some i E VL, and thus we can replace t 
in (5.12)  and (5.15) by Si or Si +pi .  Wc then write Aik and Bi%nstead of 
A and B as wcll as z:k instead of z j .  Note that without loss of generality wc 
can assume i E Aik for all k E ??f and all i E Vk because the corrcsponding 
inequality (5.12)  is always satisfied. Passing from constants t to variablcs Si 
ensurcs that only a finite number of constraints have to be introduced before 
the resource constraints (5.11) arc satisficd. 

From the above reasoning it follows that & again represents thc union 
of finitely many polyhedra. The set of all minimal points of Sc, however, is 
generally uncountable, which implics that the set AS of all active schedules 
is irifinitc (and hencc so arc all of its supersets depicted in Figure 2.4). 

The solution procedure is now as follows. We solve the convex program 

Minimize f  ( S )  

subject to S E ST (5.16) 

(5.12)  to (5.15)  for partitions {Aik, BB?" selectcd 

and add new constraints of type (5.12) to (5.15) to problcm (5.16)  until either 
the search spacc P becomes void or the resulting schcdule S is feasible. Then, 
we return to an altcrriative partition {Aik, Bik} and proceed until all alter- 
natives have been investigated. Convex program (5.16)  can be solved in poly- 
nomial time because its feasible region P represents a polytope. Of course, 
the objcctive function value of any optimal solution to (5.16)  represents a 
lower bound on the objective function value f ( S )  of any feasible schedule S 
satisfying the added constraints of typc (5.12)  to (5.15) .  

Ncxt we discuss some - iniplemeritation issues. Assumc that the inventory 
in some resource k E 727 falls below the safety stock at time t = Si  ( i  E Vc) 
or t = Si +p i  (i E VJ. To enumerate the sets Aik and Bik we construct a 
binary trcc as follows. Each lcvel of the trce belongs to one activity j E Vk. 
For cach activity j we branch ovcr the alternatives j E Aik and j E Bik and 
add the corresponding constrairits (5.12)  or (5.13), (5.15) ,  as well as for both 
alternatives the relaxation 
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of constraint (5.14) to the convex program (5.16). Each lcaf of the tree corre- 
sponds to one distinct partition {Ai< BBik}. We can stop the enumcration for 
activity i as soon as the inventory shortage at time Si or Si +p i  is settled, 
even if Aik u c Vk. In thc latter case, it may be necessary to resume the 
branching later on if the shortage reappears whilc dealing with other resource 
conflicts. Since for each resourcc k E 67 and each activity i E Vk, the con- 
struction of thc corrcsponding sets AZk and Bik requires at most lVkl steps, 
the height of the branch-and-bound tree is of order 0(1671n2). 

The computational effort can be reduced considerably by tcsting whether 
the search spacc P has becomc void before solving convex program (5.16). 
Let Zj be the minimum time lag between activities i and j that is implied 
by the prescribcd temporal constraints, incqualitics (5.12), and inequalities 
(5.15) where 23" is sct to be cqual to 1 if j E VL and equal to 0, otherwise. 

Assumc that for somc activity j E Vk the addition to set A i h r  Bik leads to 
a new temporal constraint Sj - Si 2 hij. Then P = 0 if hij + dji > 0. In that 
case, the alternative set B i b r  Aik, respectively, can immediately bc selected 
for activity j .  

Now let (S, rc) be an optimal solution to (5.16) such that schedule S is 
feasible. We then obtain a feasible schedule S' with f (S') < f (S) by 

(a) moving all activities j E Vk from A" to B" for which (5.12) is activc, 
(b) rnoving all activities j E VL from Bik to Aik for which rcjk = 1, and 

(c) moving all activitics j E V: from Bik to Aik for which xgk = 0 

and solving convex program (5.16) again. Bascd on this dominance rule, fea- 
sible solutions belonging to leaves of the enumeration tree can bc improved 
and thus thc currcnt upper bounds can bc dccrcased by performing the above 
transformations (a) to (c). 

Eventually, we consider the gcncral casc including discrete depletions and 
rcplenishments at the occurrcnce timcs of events. For events j E B n V" 
decision variable z, can be fixed to 0 if j E V; and to 1 if J E Vk+ because 
p, = 0 (compare (5.15)). If activity i with t = S, or t = SZ +p, is chosen to be 
an event, then i must deplete the stock of resource k .  Moreovcr, for an event 
j E B n Vc it may happen that S, = t though x, = 0, i.e., x, < x,(S,t). 
As a conscquence, the shortage at time t may pcrsist aftcr having introduced 
constraints (5.12) to (5.15), in which case we perform backtracking. If problem 

(F) is solvable, the enumeration tree contains alternative partitions removing 
the shortage. 


